skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Santoro, V"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. High-intensity neutron beams, such as those available at the European Spallation Source (ESS), provide new opportunities for fundamental discoveries. Here, we discuss a novel Ramsey neutron-beam experiment to search for ultralight axion dark matter through its coupling to neutron spins, which would cause the neutron spins to rotate about the velocity of the neutrons relative to the dark matter halo. We estimate that experiments at the HIBEAM beamline with a 50 m free flight path at the ESS can improve the sensitivity to the axion-neutron coupling compared to the current best laboratory limits by up to 2–3 orders of magnitude over the axion mass range 10 22 eV 10 16 eV . Published by the American Physical Society2024 
    more » « less
  2. Abstract The European spallation source (ESS) will be the world’s brightest neutron source and will open a new intensity frontier in particle physics. The HIBEAM collaboration aims to exploit the unique potential of the ESS with a dedicated ESS instrument for particle physics which offers world-leading capability in a number of areas. The HIBEAM program includes the first search in thirty years for free neutrons converting to antineutrons and searches for sterile neutrons, ultralight axion dark matter and nonzero neutron electric charge. This paper outlines the capabilities, design, infrastructure, and scientific potential of the HIBEAM program, including its dedicated beamline, neutron optical system, magnetic shielding and control, and detectors for neutrons and antineutrons. Additionally, we discuss the long-term scientific exploitation of HIBEAM, which may include measurements of the neutron electric dipole moment and precision studies of neutron decays. 
    more » « less
    Free, publicly-accessible full text available April 29, 2026
  3. Conceptual design of a nested mirror assembly for neutron anti-neutron oscillation measurements is presented, with the specific focus of potential advantages for fabrication of large-scale optics. 
    more » « less
  4. A key aim of the HighNESS project for the European Spallation Source is to enable cutting-edge particle physics experiments. This volume presents a conceptual design report for the NNBAR experiment. NNBAR would exploit a new cold lower moderator to make the first search in over thirty years for free neutrons converting to anti-neutrons. The observation of such a baryon-number-violating signature would be of fundamental significance and tackle open questions in modern physics, including the origin of the matter-antimatter asymmetry. This report shows the design of the beamline, supermirror focusing system, magnetic and radiation shielding, and anti-neutron detector necessary for the experiment. A range of simulation programs are employed to quantify the performance of the experiment and show how background can be suppressed. For a search with full background suppression, a sensitivity improvement of three orders of magnitude is expected, as compared with the previous search. Civil engineering studies for the NNBAR beamline are also shown, as is a costing model for the experiment. 
    more » « less
  5. Abstract The NNBAR experiment for the European Spallation Source will search for free neutrons converting to antineutrons with a sensitivity improvement of three orders of magnitude compared to the last such search. This paper describes progress towards a conceptual design report for NNBAR. The design of a moderator, neutron reflector, beamline, shielding and annihilation detector is reported. The simulations used form part of a model which will be used for optimisation of the experiment design and quantification of its sensitivity. 
    more » « less
  6. NA (Ed.)
    Description of planned and possible experiments for the European Spallation Source. 
    more » « less
  7. null (Ed.)